This table displays papers from OpenReview for ICLR 2025, based on a custom scoring algorithm. It also has some potential projects for each difficulty level. Read more about the methodology here.

Title
Score
Keywords
Primary Area
Rating 1-10
Confidence 1-5
Soundness 1-4
Presentation 1-4
Contribution 1-4
Potential Projects
Scaling In-the-Wild Training for Diffusion-based Illumination Harmonization and Editing by Imposing Consistent Light Transport71.19diffusion model,illumination editing,image editingapplications to computer vision, audio, language, and other modalities10,10,10,103,4,5,53,4,4,43,3,4,44,4,4,4
TANGO: Co-Speech Gesture Video Reenactment with Hierarchical Audio Motion Embedding and Diffusion Interpolation65.22co-speech video generation,cross-modal retrieval,audio repsentation learning,motion repsentation learning,video frame interpolationapplications to computer vision, audio, language, and other modalities8,8,8,104,5,5,53,4,4,42,4,4,43,4,4,4
SAM 2: Segment Anything in Images and Videos60.67computer vision,video segmentation,image segmentationapplications to computer vision, audio, language, and other modalities8,8,10,104,4,4,53,4,4,43,3,4,43,3,4,4
Spider 2.0: Evaluating Language Models on Real-World Enterprise Text-to-SQL Workflows60.17LLM Benchmark,Data Science and Engineering,Code Generation,Text-to-SQL,LLM Agentdatasets and benchmarks8,8,8,84,4,5,53,3,4,43,4,4,43,4,4,4
OLMoE: Open Mixture-of-Experts Language Models59.88large language models,mixture-of-experts,open-sourcefoundation or frontier models, including LLMs8,8,102,3,54,4,44,4,43,4,4
BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions58.5Code Generation,Tool Use,Instruction Following,Benchmarkdatasets and benchmarks8,8,10,103,4,4,43,3,4,43,4,4,43,4,4,4
Loopy: Taming Audio-Driven Portrait Avatar with Long-Term Motion Dependency58.43Diffusion Model,Avatar,Portrait Animation,Audio-Condition Video Generationapplications to computer vision, audio, language, and other modalities8,8,8,84,4,4,54,4,4,43,3,4,43,3,4,4
Do I Know This Entity? Knowledge Awareness and Hallucinations in Language Models57.75Mechanistic Interpretability,Hallucinations,Language Modelsinterpretability and explainable AI8,8,10,104,4,4,53,3,4,43,4,4,43,3,3,4
Latent Bayesian Optimization via Autoregressive Normalizing Flows55.69Bayesian optimization,normalizing flowprobabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)8,8,8,83,4,5,53,3,4,43,3,4,43,4,4,4
Simplifying, Stabilizing and Scaling Continuous-time Consistency Models55.64continuous-time consistency models,diffusion models,fast samplinggenerative models8,8,10,10,103,4,4,4,53,3,3,4,43,3,3,4,43,3,4,4,4
ShEPhERD: Diffusing shape, electrostatics, and pharmacophores for bioisosteric drug design54.183D molecular generation,drug design,moleculesapplications to physical sciences (physics, chemistry, biology, etc.)6,8,104,5,52,3,43,4,43,4,4
Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues53.37State Tracking,state space,mamba,Linear RNN,Linear Attention,GLA,DeltaNet,Formal Languagesother topics in machine learning (i.e., none of the above)8,8,83,4,43,4,43,4,43,4,4
Scaling and evaluating sparse autoencoders53.31interpretability,sparse autoencoders,superposition,scaling lawsinterpretability and explainable AI3,8,10,10,104,4,4,4,43,3,4,4,43,3,3,4,42,4,4,4,4
$\texttt{BirdSet}$: A Large-Scale Dataset for Audio Classification in Avian Bioacoustics52.76audio classification,multi-label,dataset collection,bioacousticsdatasets and benchmarks6,8,8,84,4,5,52,4,4,43,4,4,42,3,4,4
On Scaling Up 3D Gaussian Splatting Training52.61Gaussian Splatting,Machine Learning System,Distributed Traininginfrastructure, software libraries, hardware, systems, etc.8,8,8,84,4,5,53,3,3,42,3,4,43,4,4,4
Can LLMs Really Learn to Translate a Low-Resource Language from One Grammar Book?52.59llms,translation,low-resource,grammar,long-context,linguisticsfoundation or frontier models, including LLMs6,8,84,4,44,4,44,4,42,3,4
When Attention Sink Emerges in Language Models: An Empirical View52.59Attention Sink,Language Models,Empirical Studyfoundation or frontier models, including LLMs6,8,84,4,54,4,43,3,43,3,4
MMQA: Evaluating LLMs with Multi-Table Multi-Hop Complex Questions52.54LLM evaluation,multi-table question answering; multi-hop question answeringdatasets and benchmarks8,8,84,4,53,4,43,3,43,3,4
LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization50.55optimization,LoRAoptimization8,8,103,3,44,4,43,3,43,3,4
Transformers Provably Solve Parity Efficiently with Chain of Thought50.41transformers,chain of thought,parity,self-consistencylearning theory8,8,103,3,43,4,43,4,43,3,4